

A Model of CO₂ Absorption in Aqueous K₂CO₃/PZ

Jorge M. Plaza, Eric Chen, Gary Rochelle

Department of Chemical Engineering, The University of Texas at Austin

BACKGROUND

- $\,^{\bullet}$ A rate-based model for $\rm K_2CO_3$ /PZ was developed using VLE by Hilliard (2005) and kinetics and speciation by Cullinane (2005)
- Cullinane used NTRL theory to predict VLE data and speciation for $\rm H_2O-K_2CO_3$ -PZ-CO $_2$ Equilibrium and interaction parameters regressed and rate constants and diffusion coefficients obtained
- Hilliard translated Cullinane into AspenPlus[®] using the electrolyte-NRTL model (2005).
- Chen carried out pilot plant campaigns for 5m/2.5m, 6.4m/1.6m K+/PZ.
- Heats of absorption inconsistencies were solved; heats of formation for PZ species and zwitterion considerations were included

OBJECTIVE

- Develop an optimization tool for the absorption of CO₂ in K₂CO₃ /PZ
- Analyze absorber optimization to minimize stripper reboiler duty and absorber height to meet 90% CO₂ removal with 4.5 m/ 4.5 m K⁺/PZ.
- Evaluate the effect of using semilean feed and intercooling in absorber.

RATESEP MODEL

Activity Based Constants

- Power law kinetics based on activities (not concentrations)
- Activity coefficients for 5m/ 2.5m, 4.5m/4.5 m K+/PZ By AspenPlus® Flash
- Ionic Strength correction since no option in AspenPlus®

$$r = k \cdot \left(\frac{T}{T_o}\right)^n \exp\left(\frac{-E}{R} \cdot \left(\frac{1}{T} - \frac{1}{T_o}\right)\right) \cdot \prod (x_i \cdot \gamma_i)^{\alpha_i}$$

Figure 1: Power law kinetics formula

- Hydroxide reactions not included in 2nd set. Concentration small when PZCOO- is present.
- Bicarbonate ion reactions included to properly model equilibrium in boundary layer and do not affect the CO₂ absorption rate.

Table 1: Activity based rate parameters for $PZ + CO \xleftarrow{\mu, o} PZCOO + HO$

Dir	5 m/2.5 m K+/PZ			4.5 m/4.5 m K+/PZ		
	k x 10 ¹²	E (KJ/kmol)	n	k x 10 ¹²	E (KJ/kmol)	n
Forward	2.00	-17,600	17.25	1.27	-42,400	23.48
Reverse	4.63	185,400	-33.04	2.93	160,600	-26.81

Effective Interfacial Area

- Literature correlations predicted inaccurate interfacial area.
- Data from NaOH experiments using 3 m of packing CMR-2 were regressed and results were included in the model.

Figure 2: PZ reactions included in the absorber model kinetics

$$CO_{2} + OH^{-} \xleftarrow{k_{OH^{-}}} HCO_{3}^{-}$$

$$PZ + CO_{2} + H_{2}O \xleftarrow{k_{PZ}} PZH^{+} + HCO_{3}^{-}$$

$$PZCOO^{-} + CO_{2} + H_{2}O \xleftarrow{k_{PZCOO^{-}}} H^{+}PZCOO^{-} + HCO_{3}^{-}$$

Figure 3: Bicarbonate reactions included in the absorber model

Physical Properties

- Aspen Plus® density values 5-10% below Cullinane. Regression work to be included in model
- · Viscosity calculated from regressed model of Cullinane data.
- Default Aspen Plus® viscosity estimates were 70% lower.

RESULTS

Initial modeling case for 4.5m/4.5m K⁺/PZ

Variable lean loadings (mol CO₂/alkalinity).

Figure 4: Initial modeling case conditions

Figure 5: Absorber loading behavior 4.5/4.5 m PZ/K+

Optimization for 4.5m/4.5m K+/PZ

- Reduce stripper reboiler heat duty minimize absorber packing.
- Optimization based on CO₂ removal for a 500 MW plant

Figure 6: Optimization variables and configuration

Figure 7: 0.4012 lean. No intercooling. 81.4% Figure 8: 0.4012 lean. Single intercooling. Removal 88.3% Removal

Figure 9 : 0.4012 lean. Double intercooling. 92.4% Figure 10: 0.4208 lean. Double intercooling Removal 84.4% Removal

CO ₂ P lean Solvent	0.5 kPa	0.7 kPa	
Intercooling	CO ₂ Removal (%)		
None	81.4	71.6	
Single	88.3	82.9	
Double	92.4	84.4	

Table 2 : CO₂ removal results for the studied absorber configurations

CONCLUSIONS

- Without intercooling the absorber reaches a maximum T ≈52°C near the bottom.
- Intercooling improves absorber removal performance by more than 10% by reducing pinch points
- Double intercooling yields 92.4% removal with a loading of 0.40 lean and 0.46 semilean (5/0.5 kPa) for 4.5 m/4.5 m K⁺/PZ

ACKNOWLEDGEMENTS

 Aspen Technology provided the AspenPlus[®] software. This paper was prepared with the support of the TXU Carbon Management Program and of the U.S. Department of Energy, under Award No. DE-FC26-02NT41440¹

¹However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE